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Sensitivity of Normality Tests to Non-normal Data
(Kepekaan Ujian Kenormalan Terhadap Data Tidak Normal)
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ABSTRACT

In many statistical analyses, data need to be approximately normal or normally distributed. The Kolmogorov-Smirnov 
test, Anderson-Darling test, Cramer-von Mises test, and Shapiro-Wilk test are four statistical tests that are widely used for 
checking normality. One of the factors that influence these tests is the sample size. Given any test of normality mentioned, 
this study determined the sample sizes at which the tests would indicate that the data is not normal. The performance 
of the tests was evaluated under various spectrums of non-normal distributions and different sample sizes. The results 
showed that the Shapiro-Wilk test is the best normality test because this test rejects the null hypothesis of normality test 
at the smallest sample size compared to the other tests, for all levels of skewness and kurtosis of these distributions. 
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ABSTRAK

Dalam kebanyakan analisis statistik, data perlu tertabur secara normal atau menghampiri taburan normal. Empat ujian 
statistik yang digunakan secara meluas untuk memeriksa kenormalan data adalah Kolmogorov-Smirnov, Anderson-
Darling, Cramer-von Mises dan Shapiro-Wilk. Salah satu daripada faktor yang mempengaruhi ujian-ujian ini ialah 
saiz sampel. Untuk sebarang ujian kenormalan seperti yang dinyatakan, kajian ini akan menentukan saiz sampel dan 
ujian-ujian menunjukkan bahawa data tersebut adalah tidak normal. Prestasi ujian-ujian ini dinilai pada pelbagai 
spektrum data yang tidak normal dan saiz sampel yang berbeza. Keputusan kajian menunjukkan bahawa ujian Shapiro-
Wilk adalah ujian kenormalan terbaik kerana ujian ini menolak hipotesis nol bagi ujian kenormalan pada saiz sampel 
terkecil berbanding dengan ujian-ujian yang lain, untuk semua peringkat kepencongan dan kurtosis setiap taburan.

Kata kunci: Kepekaan; saiz sampel; simulasi Monte Carlo; ujian kenormalan

INTRODUCTION

Prior to using any statistical analyses (e.g. t-test, ANOVA, 
and correlation) it is important to check that any of the 
‘assumptions’ incurred on individual tests are not violated. A 
common assumption is that the random sample is normally 
distributed. Normally distributed data have a symmetric bell-
shaped curve, which has highest frequency in the middle, 
with lower frequencies towards the extremes (Gravetter 
& Wallnau 2000). In many statistical analyses, normality 
is often conveniently assumed without any empirical 
evidence or test. Indeed, normality is crucial in many 
parametric statistical methods. Furthermore, understanding 
the distribution of data could provide more information 
on the underlying mechanisms for generating the data 
(Chambers et al. 1983). When this assumption is violated, 
the interpretation and inference made be invalid. 
 There are four statistical tests that are widely used for 
checking normality, namely, the Kolmogorov-Smirnov test 
(Kolmogorov 1956; Smirnov 1936), Anderson-Darling 
test (Anderson & Darling 1952), Cramer-von Mises test 
(Anderson 1962), and Shapiro-Wilk test (Shapiro & Wilk 
1965). These tests are well known for their simplicity and 
availability in most statistical softwares (e.g. SAS, PASW 
(formerly SPSS), STATA, Minitab, etc.). 

 The null hypothesis of normality test state that the 
data are sampled from a normal distribution. When the 
p-value is greater than the predetermined critical value 
(α=0.05), the null hypothesis is not rejected and thus we 
conclude that the data is normally distributed. Sample size 
is a factor that can influence the outcome of the statistical 
tests mentioned earlier. For example, the Shapiro-Wilk test 
requires the sample size to be between 3 to 50 (Shapiro & 
Wilk 1965). Moreover, Shapiro and Wilk did not extend 
their test beyond samples size of 50 (D’Agostino 1971). 
 When a normality test is conducted on any non-
normal data especially with small sample sizes, there is a 
possibility of concluding that the data are normal when in 
fact they are not. This is because, when the data are few, 
the test which is usually based upon plotting the empirical 
cumulative density function (cdf) and the normal cdf tends 
to form a straight line and thus leading to a conclusion 
of normality. Therefore, given any test of normality on 
non-normal distributions, this study intends to determine 
the sample size at which the tests would indicate that the 
data are non-normal. Hence, the objective of this study 
is to determine the sensitivity of rejecting the tests of 
normality on non-normal data. Monte Carlo simulations 
were conducted on different non-normal distributions, 
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ranging from symmetric to skew, and kurtosis ranging from 
platykurtic (light-tailed) to normal-tailed to leptokurtic 
(heavy-tailed) distributions. 
 The rest of the paper is organized as follows. In the 
second section after the first section of the Introduction, 
the statistics of normality tests are discussed. The design 
specifications of the data are described in the third 
section while the fourth section discusses the results. The 
conclusion of our study is in the final section.

STATISTICS FOR NORMALITY TESTS

Normality can be assessed to some extend by obtaining 
skewness and kurtosis levels which are usually part of the 
descriptive statistics output. The skewness value provides 
an indication of departure from symmetry in a distribution. 
A distribution, or data set, is symmetric if the median 
divides the left side and the right side into two identical 
areas. Skewness is measured with the following equation 
(Kenney & Keeping 1962):

 Skewness = 
 

(1)

where  is the mean, N is the number of data points, and, 
s is the standard deviation.
 A symmetric distribution has a skewness value of 
zero. Negative values indicate data that are left skewed 
and positive values indicate data that are right skewed. 
 Kurtosis, on the other hand, is a measure of whether 
the data are peaked or flat relative to a normal distribution. 
That is, data sets with high kurtosis tend to have a distinct 
peak near the mean, decline rather rapidly, and have heavy 
tails. Data sets with low kurtosis tend to have a flat top near 
the mean rather than a sharp peak. Kurtosis is measured 
with the following equation (Miles & Shevlin 2001):

 Kurtosis = 
 

(2)

where  is the mean, N is the number of data points, and s 
is the standard deviation.The kurtosis for a standard normal 
distribution is three. Thus, the kurtosis is redefined as 

 Kurtosis =  (3)

so that the standard normal distribution has a kurtosis 
of zero. If the distribution is perfectly normal, skewness 
and kurtosis values of zero will be obtained. Positive 
kurtosis indicates a leptokurtic distribution. The word 
‘leptokurtic’ is derived from the Greek word ‘leptos’, 
meaning small or slender. Negative kurtosis indicates a 
platykurtic distribution. The term ‘platykurtic’ is derived 
from the French word ‘plat’, meaning flat (Miles & Shevlin 
2001). 

 The numerical methods for testing normality compare 
empirical data with a theoretical distribution. Suppose 
there are n independent observations X1, X2, …, Xn with a 
common distribution function F(x) = P(Xi ≤ x). The ordered 
statistics can be represented by X(1) < X(2) < … < X(n). The 
empirical distribution function (edf), Fn(x)which is used 
to estimate F(x), is defined as 

  (4)

 

 Notice Fn(x) is a step function that takes a step of 

height  at each observation. The function estimates 

the distribution function F(x). At any value x, Fn(x) is the 
proportion of observations less than or equal to x, while 
F(x) is the probability of an observation less than or equal 
to x. 
 The Kolmogorov-Smirnov statistic, D, which is 
defined as 
        
  (5)

is an edf statistic because it is a measure of the discrepancy 
between the edf, Fn(x) and F(x). Kolmogorov (1956) and 
Smirnov (1936) states that D belongs to the supremum 
class of the edf statistics.
 The random variable U(i) = F(X(i)) is computed by 
applying the probability integral transformation and U(i)  
follows a uniform distribution between 0 and 1. The 
Kolmogorov-Smirnov statistic, D, is thus the maximum 
of D+ and D−, that is

 D = max(D+, D–) (6)

where 

 

is the largest vertical distance 

between the edf and the distribution function when the edf 
is larger than the distribution function, and

  
is the largest vertical distance 

between the edf and the distribution function when the edf 
is smaller than the distribution function.
 The Anderson-Darling statistic, A2, is defined as 

  
(7)

where function Ψ(x) weights the squared difference (Fn(x) 
– F(x))2. The Anderson-Darling statistic (Anderson & 
Darling 1952) is computed as 

  
 (8)
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where the weight function is taken as Ψ(x) = [F(x)(1 – 
F(x))]–1.
 The Cramer-von Mises statistic, W2, is similar to 
Anderson-Darling statistic. The weight function here is 
Ψ(x) =1, instead of Ψ(x) = [F(x)(1 – F(x))]–1. The Cramer-
von Mises statistic (Anderson 1962) is computed as

  (9)

 The Shapiro-Wilk statistic, Wn, is the ratio of the best 
estimator of the variance to the corrected sum of square 
estimator of the variance, where 0 < Wn ≤1 and 7 ≤ n ≤ 
2,000 (Shapiro & Wilk 1965). The statistic is given by
          
  (10)

where a' = (a1, a2, …, an) = m'V–1[m'V–1V–1m]–0.5, m' = (m1, 
m2,…, mn) is the vector of expected values of standard 
normal order statistics, V =  n × n covariance matrix and 
X' = (X1, X2, …, Xn) is a random sample.

DESIGN SPECIFICATON

In this section, we will show that the rejection of the four 
statistical tests mentioned in the previous section depends 
on sample size. That is, as the sample size increases, the 
tests will reject the null hypothesis. Most statistical tests 
have small statistical power, which is the probability of 
detecting non-normal data, unless the sample size is large. 
In this study, we test the sample sizes for normality tests 
from n = 5, 6, …, 500 on different non-normal distributions, 
ranging from symmetric to skew, and kurtosis ranging from 
platykurtic (light-tailed) to normal-tailed to leptokurtic 
(heavy-tailed) distributions (See Table 1). 
 Data from the first distribution, chi-square (3) was 
generated directly using the SAS RANGAM function while 
data for Uniform distribution (the fifth distribution) was 
generated using the RANUNI function. Data for the other 
distributions cannot be generated directly. We need to 
generate a standard normal data first using the RANNOR 
function and then converted it to the Fleishman distribution 
(the third distribution), g-distribution (the second 
distribution) and h-distribution (the fourth distribution) 
respectively. The Fleishman (1978) power transformation 
is of the form 

 Y = a + bZ + cZ2 + dZ3, (11)

where Z are standard normal variates. Fleishman (1978) 
provided a table of values for the coefficients, b, c, and 
d that enable the transformation of the standard normal 
distribution to a non-normal distribution, with mean zero 
and variance one, but with different degrees of skewness 
and kurtosis. The extra coefficient a is easily obtained 
through the relation a = – c, that was a direct result of 
constraining E(Y) = 0. One set of coefficients (b, c, d) was 
selected from Fleishman (1978) with skewness 0.5 and 
kurtosis -0.5, which we used in the preceding equation to 
generate the normal variates to produce skewed platykurtic 
distribution. 
 The other two distributions were obtained from the 
g-distribution and h-distribution from Hoaglin (1985). 
The general form of the distribution with constant g is 
represented by the following equation.

  (12)

When g is zero, 
        
 . (13)

While, when h is zero,
        
 . (14)

Since sample size is believed to influence the normality 
test, we would like to determine the sample size at which 
the normality tests would indicate that the data are not 
normal for the non-normal data. The non-normal data are 
generated by Monte Carlo simulation as follows:
1. Generate a data set of sample size n=5 from a  

distribution using RANGAM function (SAS Institute, 
2004). 

2. Repeat Step 1 one thousand times.
3. For each replication in Step 2, perform these normality 

tests: Kolmogorov-Smirnov, Shapiro-Wilk, Cramer-
von Mises and Anderson-Darling tests.

4. If p-value of the normality test is greater than 0.05, 
then increase the number of count by one (count = 
count + 1). Initial count has been set equal to 0.

5. Obtain the average Type I error rates by dividing count 
by 1000 for each normality tests.

6. Repeat Step 1 to Step 5 for n = 6, 7,…, 500.

TABLE 1. Skewness and kurtosis coefficients for various types of distributions 

Type of distribution Distribution Skewness coefficient Kurtosis coefficient
Skewed leptokurtic Chi-Square (3) 3 6
Skewed mesokurtic g-distribution (g=.5, h=0) 1.75 8.9
Skewed platykurtic Fleishman 0.5 -0.5
Symmetric leptokurtic h-distribution (g=0, h=.225) 0 154.84
Symmetric platykurtic Uniform 0 -6/5
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7. Repeat this simulation for the other types of non-
normal distributions: Skewed mesokurtic, skewed 
platykurtic, symmetric leptokurtic and symmetric  
platykurtic.

RESULTS AND DISCUSSION

The purpose of this study is to determine at what sample 
sizes the tests would indicate that the data are non-
normal when they are really non-normal. The results 
for the normality tests with various number of sample 
sizes on different type of distributions are presented in 
Table 2. When the p-value is less than the significance 
level (α=0.05), the null hypothesis was rejected in favor 
of the alternative hypothesis that the data is not normal. 

The p-values in bracket showed the right conclusion of 
non-normal data corresponding to the sample size. 
 In Table 2, the pattern of rejection of null hypothesis 
is the same for all type of distributions. For example, 
for skewed leptokurtic, which was represented by
distribution shows that Shapiro-Wilk test rejects the 
hypothesis that data is normal when the sample size is equal 
to 40. Anderson-Darling test gives the same conclusion at 
sample size of 48 followed by Cramer-von Mises at sample 
size of 55. Kolmogorov-Smirnov needs a larger sample size 
(n=77) to indicate that the data are not normal. This pattern 
of rejection is the same in other non-normal distributions. 
In conclusion, we can say that Shapiro-Wilk is the best 
normality test compared to the other tests because this 
test rejects the null hypothesis of normality at the smallest 

TABLE 2. Sensitivity of sample sizes for normality tests of continuous data by P(EN|ONN)

Normality Test Chi-Square (3) -- Skewed Leptokurtic
n = 39 n = 40 n = 47 n = 48 n = 54 n = 55 n = 76 n = 77

Anderson-Darling 0.1120 0.0940 0.0520 (0.0470) (0.0250) (0.0240) (0.0030) (0.0020)
Cramer-von Mises 0.1530 0.1330 0.0890 0.0850 0.0510 (0.0490) (0.0080) (0.0080)
Kolmogorov- Smirnov 0.2840 0.2820 0.2110 0.1770 0.1520 0.1480 0.0530 (0.0490)
Shapiro-Wilk 0.0570 (0.0430) (0.0180) (0.0130) (0.0090) (0.0090) (0.0020) (0.0010)

Normality Test g-distribution (g=.5, h=0) -- Skewed Mesokurtic
n = 54 n = 55 n = 65 n = 66 n = 74 n = 75 n = 103 n = 104

Anderson-Darling 0.1010 0.0810 0.0590 (0.0490) (0.0370) (0.0310) (0.0100) (0.0030)
Cramer-von Mises 0.1390 0.1220 0.0900 0.0750 0.0510 (0.0460) (0.0110) (0.0080)
Kolmogorov- Smirnov 0.2420 0.2570 0.1910 0.1690 0.1280 0.1170 0.0510 (0.0390)
Shapiro-Wilk 0.0540 (0.0500) (0.0320) (0.0210) (0.0170) (0.0140) (0.0010) (0.0000)

Normality Test Fleishman -- Skewed Platykurtic
n = 91 n = 92 n = 129 n = 130 n = 178 n = 179 n = 214 n = 215

Anderson-Darling 0.1970 0.2060 0.0570 (0.0480) (0.0050) (0.0050) (0.0040) (0.0010)
Cramer-von Mises 0.3610 0.3750 0.1750 0.1740 0.0520 (0.0470) (0.0200) (0.0180)
Kolmogorov- Smirnov 0.5310 0.5360 0.3330 0.3170 0.1550 0.1470 0.0570 (0.0490)
Shapiro-Wilk 0.0560 (0.0490) (0.0030) (0.0020) (0.0000) (0.0000) (0.0000) (0.0000)

Normality Test h-distribution (g=0, h=.225) -- Symmetric Leptokurtic
n = 129 n = 130 n = 141 n =142 n = 153 n =154 n = 189 n = 190

Anderson-Darling 0.0660 0.0630 0.0520 (0.0480) (0.0460) (0.0350) (0.0230) (0.0150)
Cramer-von Mises 0.0870 0.0720 0.0630 0.0600 0.0600 (0.0440) (0.0300) (0.0240)
Kolmogorov- Smirnov 0.1480 0.1350 0.1330 0.1250 0.1090 0.0960 0.0590 (0.0490)
Shapiro-Wilk 0.0530 (0.0490) (0.0430) (0.0390) (0.0390) (0.0300) (0.0180) (0.0110)

Normality Test Uniform -- Symmetric Platykurtic
n = 73 n = 74 n = 99 n = 100 n = 133 n = 134 n = 200 n = 201

Anderson-Darling 0.1940 0.1790 0.0670 (0.0500) (0.0140) (0.0060) (0.0000) (0.0000)
Cramer-von Mises 0.3350 0.3440 0.1610 0.1610 0.0560 (0.0480) (0.0030) (0.0040)
Kolmogorov- Smirnov 0.5670 0.5800 0.4160 0.4080 0.2250 0.2370 0.0560 (0.0480)
Shapiro-Wilk 0.0510 (0.0450) (0.0060) (0.0070) (0.0000) (0.0000) (0.0000) (0.0000)

              
*P(EN|ONN)=P(predict distribution is normal |observed distribution is not normal). 
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sample size. Next is Anderson-Darling, followed by 
Cramer-von Mises and then Kolmogorov-Smirnov test. 
Apparently, the level of skewness and kurtosis do not affect 
the sensitivity of the normality tests. 

CONCLUSIONS

The performances of the normality tests, namely, the 
Kolmogorov-Smirnov test, Anderson-Darling test, Cramer-
von Mises test, and Shapiro-Wilk test, were evaluated 
under various spectrums of non-normal distributions and 
different sample sizes. The results showed that the Shapiro-
Wilk test is the most sensitive normality test because this 
test rejects the null hypothesis of normality at the smallest 
sample sizes compared to the other tests, at all levels of 
skewness and kurtosis. Thus, when the four normality tests 
are available in a statistical package, we would recommend 
practitioners to use the Shapiro-Wilk normality to test the 
normality of data. 
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